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Note 

A Conjecture on the Convergence of Numerical Estimates for 
Multidimensional integrals with Singular lntegrands 

Some consideration has been given to error expansions for a number of one- 
dimensional integrals [l], and to multiple integrals with smooth integrands [2]. 
However, little attention has been given to the error analysis of multiple integrals 
with singularities in the integrand. 

Multidimensional integrals are commonly evaluated numerically by dividing 
the region of integration into a number of identical subregions, and applying a 
quadrature formula to each subregion. The accuracy of the result can be improved 
by increasing the number of subregions. 

In this paper, an asymptotic form is suggested for the convergence of the 
quadrature results, as the number of subregions is increased, in the case of singular 
integrands with an isolated singular point. By extrapolating the numerical 
quadrature estimates, using this asymptotic behavior, the accuracy of a large 
class of integrals can be increased considerably. The method is particularly useful 
in the case of integrals with singularities at the boundary of the region of inte- 
integration, where no method, other than a direct subdivision of the region of 
integration, is possible. 

The asymptotic form for the quadrature is described later, together with an 
extrapolation procedure to determine the value of the integral as the number of 
subdivisions is increased indefinitely. Examples of the use of the procedure in the 
case of a two-dimensional and a three-dimensional integral are also given. 

The computer used in these calculations was a CDC 6600. All computations were 
performed to double precision accuracy, which is greater than 30 significant figures. 

Consider an approximation Z(n) to a d-dimensional integral over a finite volume 
obtained by dividing the region of integration into na identical subregions and 
applying a quadrature formula to each subregion. The assumption will be made that 
the quadrature scheme does not require the evaluation of the integrand at the 
singular point. The exact value of the integral will be denoted by Z(co). It is con- 
jectured that for integrands, with a singularity on the boundary of the region of 
integration, the asymptotic form for the behavior of Z(n) is 

+ other terms. (2.1) 
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For large n, the “other terms” are assumed negligible, compared with Cl0 A+/P+~. 
A, are constants that depend on the integrand, the quadrature formula, and the 
method of subdivision of the region of integration. Furthermore, it is claimed 
that the value of 01 is determined by the magnitude of the contribution from the 
subregion surrounding the singular point. The contribution from this subregion 
is O(l/nd). The analytic behavior of the integrand will enable OL to be determined. 
Consequently, a knowledge of the position of the singularity and the analytic 
behavior of the integrand will enable 01 to be determined. 

To evaluate OL, it is conjectured that the order of magnitude of the contribution 
from the subspace occupied by the singularity is determined by the product of 
the integrand, evaluated with coordinates determined by the order of magnitude 
of the values bounding the subregion, and the volume of the subspace. The use of 
this procedure is illustrated in the subsequent examples. 

Once the value of 01 has been derived, together withp values of Z(n) for different 
values of n, it is possible to extrapolate (2.1). This can be done by neglecting the 
“other terms” in (2.1), and truncating the infinite series after (p - 1) terms. 
The resulting set of equations can be solved for Z(co). 

It is often convenient to have take consecutive integer values, say 

n = (N - p + I), (N - p + 2) ,..., N, 

and evaluate the corresponding values of Z(n). Retaining only (p - 1) unknowns A,, 
r = 0, l,..., (p - 2) in the summation in (2.1), one can solve the subsequent set 
of simultaneous equations to give an “extrapolated” estimate for Z(co). This we 
shall call ZD,N(co). It is given by 

F1(N-rr)“+“z(P L ‘) (-l)‘Z(N-r) 
LA@) = +po p-l 

F. (N - r)a+p-2 (” I ‘) (-1)c * 
(2.2) 

As an example of the use of (2.1) together with the extrapolation procedure (2.2), 
consider the two dimensional integral 

I2 = Jo1 lo1 (2 
dx dy 

- x2 - y31/2 * (3.1) 

The integral has a singularity at x = y = 1. The region of integration is a unit 
square. I2 can be evaluated analytically to give 

z2 = ,r(l - V2/2) = 0.92015 11845... 
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Here it will be used, solely, to illustrate the conjecture regarding integrals with 
singular integrands at the boundary region of integration, for the case where no 
procedure, other than a direct quadrature approach, is possible. 

The region of integration can be simply divided into n x n squares of side l/n. 
To determine OL one must examine the contribution to the quadrature sum from 
the region about the singularity. This arises from the area of the subregion 
containing the singularity l/n2, and the value of the i&grand obtained by the 
quadrature formula. Since the singularity arises in the region x - (1 - l/n) and 
y - (1 - l/n), the integrand contribution to the quadrature sum in this subsquare, 
(3.1), is assumed to be O(nl/z). Hence, the total contribution from the singular 
subregion is O(l/nz * nip), i.e., O(l/#). Consequently 01 = 3/2. 

The asymptotic form (2.1) becomes 

TABLE IA 

The First Four Quadrature and Extrapolation Results 
for the Two-Dimensional Integral ZB 

n z(n) n1 P ZP.4(aJ) Fractional error 

1 0.91435 30958 9 1 0.91949 58938 -0.000712 
2 0.91823 58214 36 2 0.92017 10107 -0.0600213 
3 0.91913 16001 81 3 0.92014 86011 -0.tmOoO305 
4 0.91949 58938 144 4 0.92014 90055 -0.OOOOO261 

nr is the number of integrand evaluations. 

TABLE III 

The Quadrature and Extrapolation Results Using the 4 x 4 to 7 x 7 
Subdivision of the Region of Integration for Zg 

n Z(r) n1 P Ll(~) Fractional error 

4 0.91949 58938 144 1 0.91987 17296 -0.000304 
5 0.91968 51417 225 2 0.92015 49456 +O.OOOOO384 
6 0.91979 80527 324 3 0.92015 09513 -0.000000497 
7 0.91987 17296 441 4 0.92015 12008 +0.000000226 

n: is the number of integrand evaluations. 
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Tables IA and IB contain the numerical quadrature estimates of the integral, 
using a nine point Gauss product quadrature formula [3] for each subregion. The 
extrapolated values Z&co), p = 1,2, 3,4, are given in Table IA, and Z&co), 
p = 1,2, 3, 4 are given in Table IB. The fractional errors [(Z&co) - Z( cc))/Z(~)] 
in the extrapolated values are given in the right column of the tables. It is clear 
that the extrapolated values improve the direct quadrature sum Z(n) by orders of 
magnitude. The accuracy of the value of Z4,,(co) is greater than the value of 
Z(7) by 3 orders of magnitude. That given by Z4Jco) exceeds, by 2 orders of 
magnitude, the result Z(4). 

The second example is, 

I3 = s,ol/olj-ol(l - x3+~+Za)z~~dy~~. (4.1) 

In a similar manner to (3.1), one can extrapolate the quadrature estimates for 
I3 . The singularity in this case occurs at the origin, and the region of integration 
is a cube. Dividing the cubical region into n3 cubes of side l/n, one can determine CX. 
The contribution from the volume of the subregion around the origin is l/n3. 
The quadrature evaluation of the integrand in the subcube at the origin requires 
x - I/n, y - l/n, and z - l/n. The integrand, (4.1), is @no). Hence the total 
contribution to the quadrature scheme from the cube at the origin is 0(l/n3 * no), 
i.e., U(ljn3). Thus a: = 3, and the asymptotic form for Z(cc) is given by 

Z(n) = Z(m) + i &. + -a*. 
9-O 

(4.2) 

Table II contains the values of Z(n), using a 19 point quadrature formula due to 
Hammer and Stroud [3], for n = 4, 5 ,..., 10, with extrapolated values Z,,,,(co). 

TABLE II 

The Three-Dimensional Cubature Results Together with the Extrapolation Results for Is 

4 0.62217 93246 38684 1216 1 0.62220 18739 3036 
5 0.62219 10782 34015 2325 2 0.62220 34165 1516 +o.ooooO 154.. 
6 0.62219 62755 22526 4104 3 0.62220 34166 3274 +o.ooooO ooool 17.. 
7 0.62219 89193 33254 6517 4 0.62220 34165 6797 -o.ooooO oooo0 647.. 
8 0.62220 04036 82181 9728 5 0.62220 34165 8479 +o.ooooO oooo0 168.. 
9 0.62220 13004 86626 13831 6 0.62220 34165 8295 -0.OOOOO 00000 018.. 

10 0.62220 18739 30360 19000 7 0.62220 34165 8315 +O.OOOOO 00000 002.. 

y is the number of integrand evaluations. 
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It is not possible to evaluate la exactly, analytically. So, as a measure of the accuracy 
of the extrapolated values, the right column of Table II contains the differences 
Ld~) - L-d~o)l for P = 5, k..., 10. In the absence of an exact value for 
the integral, this “measure” of the accuracy is the alternative to no “measure” of 
the accuracy. 

Here also the extrapolated values converge more rapidly than in the original 
sequence I@) of quadrature estimates. Using the right column of Table II as a 
measure of the accuracy, [l,,lO(co) - la,lO(co)] is O(lO-13), compared with 0(1O-s) 
for [WO) - ~d~)l. 

A large class of integrals with boundary singularities appear to have the asump- 
totic behavior suggested by (2.1). The resulting improvement in the convergence 
of the quadrature approximations, after using an extrapolating scheme such as (2.2), 
provides estimates for the integrals that exceed by orders of magnitude those 
obtained directly by multiple applications of a quadrature formula for each 
subregion. 

It is possible to generalize the method for cases in which the integrand is singular 
along a line or plane. 
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